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Abstract

The effect of five experimental parameters on the ion-interaction chromatographic retention of pesticides characterized by
different polarity was investigated by means of experimental design and artificial neural network treatments. The factors
considered were: (1) the mobile phase pH; (2) N, the alkyl-chain length of the IIR (ion-interaction reagent); (3) CM, the
organic modifier concentration in the mobile phase (4) CR, the concentration of IIR and (5) F, the flow-rate. The use of
fractional design and Hoke design allowed useful information to be drawn about the retention mechanism involved and to
build, through artificial neural network treatment (ANN), a model characterised by both descriptive and predictive ability.
Four neurons and a bias unit were employed.

The ANN proved to be a useful instrument in the optimisation of the chromatographic separation, as regards resolution
and total analysis time: the experimental retention obtained in the optimal conditions always differed within 14% from the
predicted ones.  1998 Elsevier Science B.V.

Keywords: Neural networks, artificial; Experimental design; Factorial design; Hoke design; Chemometrics; Optimization;
Pesticides

1. Introduction retained. Since, likely, not all the original reversed-
phase sites are modified, ion-interaction and conven-

Ion-interaction chromatography is based on the tional reversed-phase mechanisms can coexist and
use of a reversed stationary phase that is dynamically alternatively predominate, as a function of the ex-
modified by a suitable ion-interaction reagent (IIR) perimental conditions.
added to the mobile phase. The IIR, when flowing in Many variables are involved, such as the chemical
isocratic conditions, induces a dynamic modification properties and the concentration of the ion-inter-
of the surface of the stationary phase with the action reagent, the pH and the ionic strength of the
formation of a double electrical layer adsorbed onto mobile phase. The effects of the different factors on
it [1,2]. Anionic and cationic species can thus be retention are often non linear and/or interdependent

on each other [3–6].
* It must be considered that variations of theCorresponding author. Tel.: 39.11.6707626; fax: 39.11.6707615;
e-mail gennaro@ch.unito.it experimental conditions affect both the retention of
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the analytes and the extent and the properties of the formed by the use of artificial neural network in the
moiety adsorbed onto the stationary phase. separation of 5 widely diffused pesticides, character-

Due to the dependence on so many factors, the ised by different chemical properties.
technique is very versatile and can be made suitable In particular three quite hydrophilic species (the
to solving different separation problems. But, on the phenoxyacids: 2,4,5-trichlorophenoxyacetic acid or
other hand, the optimisation of the experimental 2,4,5-T, 2,4-dichlorophenoxyacetic acid or 2,4-D and
conditions can be very complex. This is true when (6)2-(2,4-dichlorophenoxy) propionic acid or DCP),
using univariate methods but it represents a chal- a less hydrophilic compound (2-methyl-4,6-dinitro-
lenge also when using multivariate treatments, due to phenol or DNOC), and a species characterised by
the large number of the variables which must be predominantly lipophilic characteristics (5-bromo-6-
simultaneously treated. methyl-5-butyluracil or bromacil) were considered.

By using alkylammonium salts as the ion-inter- Structures are shown in Fig. 1.
action reagent, a chemometric study has been already
performed in this laboratory to optimize five in-
dependent variables [7], namely the ion-interaction

2. Theory
reagent concentration CR, the alkyl chain length N,
the organic modifier concentration CM, the mobile
phase pH and the flow-rate F. For the cationic 2.1. Fractional factorial design and Hoke design
analytes atrazine and simazine the use of experimen-
tal design methods and multivariate analysis permit- Factorial designs were first introduced by Fisher in
ted to build mathematical models capable of correlat- 1926 [8]. Full and fractional designs, widely de-
ing the chromatographic response (retention time) to scribed elsewhere [9,10], are here shortly summa-
the factors considered or to their combination. The rised.
models showed good descriptive ability, which con- In the factorial designs each factor is investigated
tributed well to a better knowledge of the retention at fixed levels: the most common is the two level
processes involved, together with a good predictive factorial design, characterised by the orthogonality of
ability. the factors. Full factorial design contains all the

In this paper an optimisation treatment was per- possible combinations of the selected settings of the
experimental factors, so that a 2-level full factorial

ndesign requires, n being the number of the factors, 2
experiments. Representing the two levels of each
factors with 11 and 21, the j columns of the

j21experimental matrix is obtained writing 2 times
j21 n

21 and 2 times 11 as many times to get 2
values.

Full factorial design allows, directly from the
experimental matrix, calculation of the effects of the
factors and of all the possible multi-factor interac-
tions: to calculate the effect of an original factor it is
sufficient to sum up the responses obtained for each
experiment with the sign of the correspondent ele-
ment in the experimental matrix. The sum is then
divided for half the number of the experiments.
Analogously, the interactions effect can be calculated

Fig. 1. Molecular structures of the five pesticides considered. determining the columns of signs by multiplying the
2,4,5-T52,4,5-trichlorophenoxyacetic acid; 2,4-D52,4-dichloro-

columns of signs corresponding to the factors takingphenoxyacetic acid; DCP5(6)2-(2,4-dichlorophenoxy) propionic
part in the interaction.acid; DNOC52-methyl-4,6-dinitrophenol; BRC55-bromo-6-

methyl-5-butyluracil. As a disadvantage, besides the high number of
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experiments, the 2-level full factorial design does not 2.2. Artificial neural networks
consider possible curvatures.

A way to perform a lower number of experiments, The use of ANNs (artificial neural networks) is
when treating the same number of factors, is the use recently gaining a lot of interest and many kinds of
of fractional factorial design. This is possible by ANN, simulating the activities of the human brain,
associating new original factors to the higher order have been developed. Applications in classification,
interaction columns of signs. This operation leads to modelling, mapping and association have been re-
a partial loss of information, since it results in it ported in literature [12,13]. The examples of chemi-
being impossible to discriminate between the effects cal application concern kinetic studies [14], spec-
or the interactions of the effects. troscopy [15–17] and electrochemistry [18]. In

To determine the eventual presence of second HPLC optimisation ANNs have been used for peak-
order effects it is necessary to sample at least three tracking [19], in response surface modelling and
levels of experiments. A diffused plan of this kind is mobile phase optimisation [20].
the star design, in which the experiments are per- This paper deals with the development, by means
formed along the factor axes and at their intersection of ANN, of a surface response modelling for an
and which leads to the calculation of regression ion-interaction RP–HPLC system.
models containing first order and squared factors, but A neural network treatment, with respect to MLR,
no interaction terms. can be very useful when non linear dependencies are

To obtain a model containing the main factors plus supposed to be present, as those induced by pH
the interactions and the squared terms the use of a variations [21,22] or unpredictable interactions be-
central composite design is required, which results tween the variables.
from the addition of a factorial design and of a star Neural networks do not require the explicitation of
design. a mathematical model. The final model is built

A particular kind of central composite design is through a continuous and iterative adjustment of the
the Hoke design [11]. This plan is useful whenever weights which are assigned to each variable xi

the results of the experiments lie on the limits of the considered, through the implicit building of the
dominion of the variables and these limits cannot be transfer function.
experimentally enlarged due to physico–chemical In particular, a BNN (backpropagation neural
constrictions. This design consists in the superim- network) has been used, that is typically character-
position of two star-designs indicated as external and ized by three layers: the input, the hidden and the
internal star designs (see the scheme of an Hoke output: the general processing unit is reported in Fig.
design for two factors and three levels in Fig. 2). For 3.
three-levels and f factors, the Hoke design consists The back-propagation function is a development
of 2(2f 32)11) experiments. of neural networks and can use continuous values of

the variables, scaled to range between 21 and 11.
Both the input and the output values are expressed as
real numbers. The activation of a neuron is defined
as the sum of weighted input signals to that neuron:

Fig. 2. Hoke design for two factors and three levels (9 experi-
ments). Fig. 3. Scheme of an artificial neuron.
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A 5O w x 1 B all the solutions. Octylamine and orthophosphorick ik i k
i acid were Fluka (Buchs, Switzerland) analytical-

grade chemicals. Analytes (2,4,5-T, 2,4-D, DCP,with B being the bias value, x the input variablesk i
DNOC and bromacil) were all purchased by Labser-and w the weights that must be adjusted.ik
vice Analytica (Anzola Emilia, Italy) and acetonitrileA is transferred to the neuron output by means ofk
was Merck (Darmstadt, Germany) analytical gradea transferability function that assumes the expression
chemicals.of a sigmoid transfer function f(x) with an activation

value ranging between 21 and 11:
3.3. Chromatographic conditions

1
]]]f(x) 5 2A k(1 1 e ) An end-capped Superspher 100 RP-18 column

(250.034.6 mm, 4 mm) (Merck) and a (15.034.6
The function is centred on the zero value and this

mm) LiChrospher RP-18 (5 mm) guard precolumn
means that every net unit is switched on when

were used.
activation is greater than zero and is switched out

The experiments planned by the experimental
when activation is lower than zero. In order not to

design required a number of eluents prepared with
force the level 0 to assume the absolute value 0, an

different combinations of the values of the 5 vari-
external input is added, called bias, which represents

ables considered, (N5alkyl chain length, mobile
the value of the threshold, i.e. the value to which the

phase pH, CM5organic modifier concentration,
unit naturally trends in the absence of any other

CR5IIR concentration, F5flow-rate). The table of
external stimulation.

experiments (Table 1) guarantees for the randomisa-
The learning mechanism of the back-propagation

tion of the experiments.
network works in a cyclic manner. Given x as thei The chromatographic system was conditioned by
input data and D as the desired output value, the

passing, in isocratic conditions, the eluent through
network computes successive values of the output Yi the column until a stable baseline signal was reached
which are compared with D and the error evaluated.i and when reproducible capacity factors were ob-
This error is back-propagated and the weights suc-

tained for three subsequent injections, (a minimum of
cessively adjusted up to reach convergence, i.e. when

1 h, at flow-rate 1 ml /min, was usually necessary).
the error obtained becomes lower than that admitted.

Spectrophotometric detection at 230 nm was em-
ployed.

3. Experimental

4. Results
3.1. Apparatus

4.1. Fractional factorial design
The analyses were carried out with a Merck–

Hitachi Model L-6200 Lichrograph chromatograph Preliminary experiments permitted the identifica-
(Tokyo, Japan) equipped with a two channel Merck– tion of the variable space within which all the
Hitachi Model D-2500 Chromato-integrator and in- analytes present retention times greater than the dead
terfaced with a Model L-4200 UV–Vis detector. time and lower than about 60 min.

A Metrohm 654 pH meter (Herisau, Switzerland), A two-level fractional experimental design was
equipped with a combined glass-calomel electrode first performed, that for 5 variables, consists of 16
was employed for pH measurements. experiments. The results (retention times, min) are

reported in Table 1 where the signs 1 and 2

3.2. Reagents respectively indicate the maximum and the minimum
value of the variables (see Table 2).

Ultrapure water from a Millipore Milli-Q System As previously said, the results of the experiments
(Milford, MA, USA) was used for the preparation of of this design permit the estimation of the effects of
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Table 1
Fractional Factorial Design. Experimental retention times (min) for the five pesticides as a function of mobile phase pH, alkyl-chain length
N, organic modifier concentration CM, ion-interaction reagent concentration CR and mobile phase flow-rate F

Exp. pH N CM CR F 2,4,5-T 2,4-D DCP BRC DNOC

1 2 2 2 2 1 23.6 12.7 23.2 14.2 33.6
2 1 2 2 2 2 6.3 5.8 5.8 23.9 5.8
3 2 1 2 2 2 58.9 33.7 53.9 25.6 64.4
4 1 1 2 2 1 14.3 8.6 10.3 12.9 10.3
5 2 2 1 2 2 19.8 13.4 21.7 13.8 30.2
6 1 2 1 2 1 3.2 3.2 3.2 7.6 3.2
7 2 1 1 2 1 11.8 7.8 12.1 7.9 16.5
8 1 1 1 2 2 7.4 6.2 6.6 12.9 7.2
9 2 2 2 1 2 47.0 25.5 44.5 26.5 60.2

10 1 2 2 1 1 8.8 5.6 6.6 14.3 6.1
11 2 1 2 1 1 54.3 29.8 43.2 14.5 41.3
12 1 1 2 1 2 61.3 32.8 42.6 24.0 40.0
13 2 2 1 1 1 11.1 7.5 11.8 7.8 16.4
14 1 2 1 1 2 6.6 5.6 5.9 13.4 6.4
15 2 1 1 1 2 32.7 20.9 30.8 13.8 36.5
16 1 1 1 1 1 8.7 6.2 7.1 7.4 8.4

The factor experimental values range between 2 and 1, (see Table 2).

expressed by a numeric value and the sign gives theTable 2
Factor experimental range direction of the effect.

It can be so observed that the lowest factor effectspH N CM CR F
are played on retention of bromacil: this result can be

1 8 8 40 0.010 0.9
correlated to the predominantly lipophilic properties2 4 4 30 0.001 0.5
of this species with respect to the more hydrophilic
phenoxyacids and DNOC. It has been already as-

the principal factors and of their second order sumed [23] that under the same experimental con-
interactions, that are presented in Table 3. It is very ditions of stationary and mobile phase, analytes
easy to read the information contained in the data of characterised by different chemical properties can be
the table, since the effect of the different factors is retained through different interaction mechanisms.

Table 3
The effects of the factors and of their interactions calculated for the five analytes from the fractional factorial design

Factors 2,4,5-T 2,4-D DCP BRC DNOC

N 15.4 8.3 10.5 20.3 7.8
CR 10.7 5.3 7.0 0.4 5.5
CM 221.7 210.5 216.4 28.9 217.1
pH 217.8 29.7 219.1 21.0 226.5
F 213.0 27.8 211.8 28.4 214.3
N3CR 5.5 14.3 3.2 20.4 1.4
N3CM 2103 25.5 26.9 5.6 24.7
N3pH 1.3 0.1 0.8 20.2 3.3
N3F 24.8 22.5 23.5 0.0 23.5
CR3CM 26.4 22.9 23.9 20.31 22.9
CR3pH 2.9 6.5 2.1 0.1 3.1
CR3F 23.2 21.1 21.9 0.0 23.4
CM3pH 5.5 2.6 5.7 0.5 7.9
CM3F 5.1 2.5 4.1 2.6 5.4
pH3F 1.4 1.1 3.4 0.4 6.5
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While ion-interaction mechanisms govern the re- most suitable. As said, this consists in two star
tention of the more hydrophilic analytes, convention- designs (internal and external) and it requires for 5
al reversed-phase mechanisms likely intervene in factors ( f ): (2f 32)11521 experiments. The levels
determining the retention of the more lipophilic investigated (2, 0, 1) are reported in Table 4a,b. In
bromacil: the unmodified sites still present on the Table 5a–c are shown the results obtained for the
reversed-phase surface are used. In agreement with Hoke design, where 0 indicates the central point.
this hypothesis bromacil retention does not practical-
ly depend on the alkyl-chain length N (value of the 4.3. Artificial neural networks
coefficient520.30), on the concentration of the IIR
(0.36) and very little also on the mobile phase pH To build a model able to correlate the retention of
(20.96). On the contrary, the major effects on the analytes to the different experimental conditions,
bromacil retention are played by the flow-rate and taking into account possible nonlinear dependence
the organic solvent concentration, as is usual for a between retention and the experimental parameters, a
reversed-phase mechanism. back-propagation neural network function was used.

For all the other analytes, a dependence of re- The algorithm used, developed by one of the
tention on the other factors considered was verified. authors, consists of four neurons and a bias unit (Fig.
In particular it can be observed that the retention 4).
decrease induced by organic solvent increase is The treatment started with three neurons and the
generally higher than that observed in a reversed- number of calculation cycles was increased up to
phase mode. This result can be explained by consid- convergence (response error between two successive

25ering, besides the increased eluotropic strength of the cycles lower than 1?10 ) . The correlation coeffi-
eluent, the effect that the organic solvent exerts on cient resulting was too poor, so that it was necessary
the modification of the stationary phase, when the to introduce another neuron. With four neurons, 150
organic solvent competes for the surface of the cycles were required to achieve convergence. Corre-
stationary phase with the moiety already adsorbed. lation coefficients were always greater than 0.9911.
The increased solvent eluotropic strength and the In Fig. 4, the final weights obtained after the
lower extent of surface modification play concomi- completion of the iterative processes are presented,

2tant roles, in decreasing retention of the more together with the R correlation coefficients.
hydrophilic analytes [24,25]. In order to verify the predictive ability of the

Also, as regards the effect of the interaction model in the chromatographic optimization process,
between the factors, it is possible (Table 3) to two sets of conditions able to guarantee the res-
distinguish a different behaviour of bromacil with olution of all the analytes in a reasonable total
respect to the other analytes. analysis time were identified. For this purpose, a

grid-search algorithm and the obtained ANN model
4.2. Hoke design were used. The neural model was used to calculate

the retention for the different analytes under given
A new plan of experiments was set, again consid-

ering the chemical restrictions of the system (as for Table 4
Factor experimental values ranges for the Hoke Designexample the pH range compatible with the silica-

based stationary phase) and imposing a reasonable pH N CM CR F
total analysis time (#60). To evaluate the eventual a) Internal star

23presence of second order dependencies, a three-level 1 8 8 40 10.0?10 0.9
23design is required. 2 4 4 30 1.0?10 0.5
230 6 6 35 5.5?10 0.7In our conditions, where the space of the variables

cannot be further enlarged, and the maximum of the b) External star
23

1 7 7 38 8.0?10 0.8response surface obtained from the factorial design
23

2 5 5 32 1.0?10 0.6resulted in being shifted towards the limits of the
230 6 6 35 5.5?10 0.7variable dominion, the Hoke design seemed to be the
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Table 5
Hoke Design. Experimental retention times (min) for the five pesticides as a function of the five factors considered

pH CM CR F N 2,4,5-T 2,4-D BRC DCP DNOC

a) Internal star
1 0 0 0 0 7.04 5.33 11.30 5.92 6.34
2 0 0 0 0 8.32 6.08 11.04 7.07 8.45
0 1 0 0 0 6.56 5.15 10.02 5.70 6.40
0 2 0 0 0 14.02 8.80 15.94 10.61 10.85
0 0 1 0 0 9.41 6.66 11.71 7.68 8.29
0 0 2 0 0 6.56 5.01 11.78 5.54 6.08
0 0 0 1 0 7.07 5.17 10.16 5.86 6.32
0 0 0 2 0 10.16 7.30 13.86 8.37 8.93
0 0 0 0 1 11.73 8.05 9.38 11.84 10.16
0 0 0 0 2 6.75 5.06 12.37 5.70 6.11

b) External star
1 0 0 0 0 7.20 5.41 11.49 6.02 6.27
2 0 0 0 0 17.39 11.07 11.89 17.36 23.20
0 1 0 0 0 5.86 4.80 9.28 5.22 5.76
0 2 0 0 0 17.33 10.37 17.57 12.80 12.05
0 0 1 0 0 9.92 6.98 11.73 8.10 8.58
0 0 2 0 0 4.67 4.05 11.84 4.10 4.40
0 0 0 1 0 6.40 4.69 9.01 5.36 5.63
0 0 0 2 0 11.89 8.58 16.80 9.79 10.29
0 0 0 0 1 18.80 12.05 11.92 14.72 14.91
0 0 0 0 2 5.65 4.45 11.87 4.90 5.33

c) Central point
0 0 0 0 0 9.2 6.5 11.8 7.8 8.0

conditions and the grid-search algorithm was used to imposed. The two sets of variables so evaluated are
select the best conditions of resolution. Total analy- reported in Table 6.
sis times of 20 and 40 min respectively were The results reported in Table 7 show a very

2Fig. 4. Scheme of the ANN used, consisting of four neurons and a bias unit; final weights and correlation coefficients R .
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Table 6
The two sets of conditions given by the ANN model, imposing 20
(experiment 1) and 40 min (experiment 2) as total analysis time
and the resolution of all the analytes

Exp. pH N CM CR F
231 5.3 6 30.0 3.0310 0.6
232 4.6 5 30.0 8.0310 0.5

satisfactory agreement, (ranging between 2.5–
14.2%) between the predicted and the experimental
retention times. As an example, Fig. 5 reports the
separation obtained in about 20 min.

It is also interesting to note that in the two sets of
conditions, the experimental elution sequence of the
analytes is different. This is likely due to the
chemical properties of the analytes and in particular
to the already discussed lower hydrophilicity of
bromacil and partially of DNOC. Their retention is
therefore less affected, with respect to the other
analytes, by most of the involved factors which
characterize ion-interaction mechanisms. It is worth-
while to underline that the ANN model was able to
predict this elution sequence inversion, that is an
example of how complex the dependence of re-

Fig. 5. Chromatogram obtained in the experimental conditions
tention is on the different variables involved. predicted by the ANN model and reported in Table 6 (experiment

In conclusion, it can be said that the Neural 1). Separation of 2,4-D, DCP, DNOC, 2,4,5-T and BRC (1.0 mg/ l
Network model seems to have ‘learnt’ well, the each). Stationary phase: Merck 4-mm Superspher 100 RP-18.

Mobile phase: 3.0 mM hexylamine orthophosphate in water–mechanisms that govern the retention of the analytes
acetonitrile (70:30), at pH 5.30. Flow-rate, 0.6 ml /min. Spectro-in the ion-interaction chromatographic conditions
photometric detection at 230 nm.

here used.
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